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1. Introduction

It is a well-known fact since Rayleigh that the mass of a linear spring can be taken into account
approximately if one-third of the spring mass is added to the mass M at the end of the spring. In a
short paper [1] Yamamoto has revisited this problem. Recently, in the context of a research study
on the effect of the spring mass on the frequency spectrum of a combined system consisting of a
cantilever to which a spring–mass system is attached at the free end, the need arose to estimate the
error caused by using an equivalent massless spring. The present note presents some related results
of these efforts and represents to some extent the counterpart of Ref. [1] for bending vibrations.
Although it is acknowledged that the contribution of this study does not solve a very complex

problem, it is nevertheless thought that the numerical results collected in one table can be helpful
to design engineers working in this area.
2. Theory

The exact frequency equation of the vibrational system in Fig. 1, i.e., a cantilevered
Bernoulli–Euler beam carrying a tip mass M can be found in the literature [2,3] in the following
see front matter r 2004 Elsevier Ltd. All rights reserved.
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Fig. 1. Cantilevered beam carrying a tip mass.
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form:

1þ cos b cosh bþ bMbðcos b sinh b� sin b cosh bÞ ¼ 0; (1)

where the abbreviations

bM ¼
M

mL
; o ¼ b

2

ffiffiffiffiffiffiffiffiffi
EI

mL4

r
(2)

are used. Here, bM and b denote the non-dimensional mass and frequency parameter. Further, m,
EI and o represent the mass per unit length and bending rigidity of the beam and the
eigenfrequency of the combined system, respectively.
On the other hand, when the mass of the beam mL is small in comparison to the tip mass, the

restoring effect of the beam on the tip mass can be represented by a massless spring with an
equivalent spring stiffness coefficient of [4]

keq ¼ 3EI=L3: (3)

Hence, the fundamental eigenfrequency of the combined system in Fig. 1 can be approximated by

oeq ¼

ffiffiffiffiffiffiffiffiffiffi
3EI

ML3

r
: (4)

It is reasonable to pose the question of how to express the exact fundamental eigenfrequency o1

of the system in terms of oeq: It can easily be shown that

o1 ¼ coeq; (5)

where the factor c is defined as

c ¼ b
2

1

ffiffiffiffiffiffiffi
bM

3

r
: (6)

As mentioned in the Introduction, the mass of a linear spring can approximately be accounted for
in that one-third of its mass is added theoretically to that at the end of the spring. In the context of
bending vibrations of the cantilever carrying a tip mass, the number a ¼ 33

140
is a well known value

[5,6]. Its derivation is based on the assumption that during the vibrations the shape of
the deflection curve of the beam is the same as the one produced by a load statically applied at the
free end [6].
It is in order to investigate the degree of accuracy of the value 33

140
: The task is to represent the

combined system in Fig. 1 by an equivalent massless spring–mass system. Let us pose the question
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Fig. 2. Equivalent spring–mass system for obtaining the fundamental frequency of the system in Fig. 1.
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of how the coefficient a should be determined in the simple system in Fig. 2 in order that the
eigenfrequency of this system is equal to that of the one in Fig. 1.
Requiring

o1 ¼ b
2

1

ffiffiffiffiffiffiffi
bM

3

r
oeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keq

M þ aðmLÞ

s
(7)

one obtains

a ¼
3

b
4

1

� bM : (8)

Here and in Eq. (6), b1 represents the first root of the transcendental Eq. (1) for the corresponding
bM value which is to be obtained numerically.
Recognizing that the eigenfrequency obtained with the approximation a ¼ 33

140
is

o33=140 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
keq

M þ 33
140

mL

s
; (9)

it can easily be verified that

d :¼
o33=140

o1
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bM þ a
bM þ 33

140

s
: (10)

3. Numerical evaluations

It is obvious that the non-dimensional parameters c; a and d depend (via b1 or directly) upon
the mass parameter bM : In Table 1, for a wide range of the parameter bM ; the corresponding b1;
c; a and d values are listed. In the second column, the b1 values are obtained from the numerical
solution of the exact frequency Eq. (1). It is seen that for bM ¼ 0; i.e., if there is no tip mass M,
b1 ¼ 1:875104 is obtained which is a well-known value for the first dimensionless frequency



ARTICLE IN PRESS

Table 1

Collection of b1; c; a and d values for a wide range of the non-dimensional mass parameter bM

bM b1 c a d

0 1.875104 0 0.242672 1.014652

0.001 1.873233 0.064065 0.242643 1.014529

0.01 1.856787 0.199051 0.242390 1.013494

0.1 1.722742 0.541851 0.240597 1.007246

0.2 1.616400 0.674609 0.239467 1.004297

0.3 1.536143 0.746214 0.238759 1.002838

0.4 1.472408 0.791637 0.238275 1.002012

0.5 1.419964 0.823151 0.237924 1.001500

0.6 1.375669 0.846336 0.237657 1.001161

0.7 1.337499 0.864123 0.237447 1.000926

0.8 1.304087 0.878208 0.237278 1.000755

0.9 1.274462 0.889640 0.237140 1.000627

1 1.247917 0.899106 0.237023 1.000530

2 1.076196 0.945664 0.236435 1.000161

3 0.981231 0.962814 0.236212 1.000077

4 0.917358 0.971734 0.236094 1.000045

5 0.870021 0.977202 0.236021 1.000029

6 0.832826 0.980897 0.235972 1.000021

7 0.802429 0.983562 0.235936 1.000015

8 0.776877 0.985574 0.235909 1.000012

9 0.754937 0.987147 0.235888 1.000009

10 0.735782 0.988411 0.235871 1.000008

15 0.666137 0.992231 0.235820 1.000003

20 0.620512 0.994157 0.235794 1.000002

25 0.587187 0.995318 0.235778 1.000001

50 0.494342 0.997651 0.235746 1.000000

100 0.415934 0.998823 0.235730 1.000000

200 0.349861 0.999411 0.235722 1.000000

300 0.316166 0.999607 0.235720 1.000000

400 0.294240 0.999705 0.235718 1.000000

500 0.278283 0.999764 0.235717 1.000000

600 0.265889 0.999804 0.235717 1.000000

700 0.255840 0.999832 0.235717 1.000000

800 0.247443 0.999853 0.235716 1.000000

900 0.240265 0.999869 0.235716 1.000000

1000 0.234021 0.999882 0.235716 1.000000

2000 0.196793 0.999941 0.235715 1.000000

3000 0.177824 0.999961 0.235715 1.000000

4000 0.165485 0.999971 0.235715 1.000000

5000 0.156507 0.999976 0.235715 1.000000

6000 0.149533 0.999980 0.235715 1.000000

7000 0.143881 0.999983 0.235715 1.000000

8000 0.139157 0.999985 0.235714 1.000000

9000 0.135119 0.999987 0.235714 1.000000

10000 0.131607 0.999988 0.235714 1.000000
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parameter of the bare cantilever. Conversely, for extremely large values of bM ;b1 approaches zero
which represents the first non-dimensional eigenfrequency parameter of the clamped–simply
supported Bernoulli–Euler beam.
Table 1 shows that the coefficient c; beginning with zero, goes towards 1 as bM gets larger. It is

seen further that in the range of larger bM values, i.e., where the tip mass M dominates the mass of
the beam mL, the exact fundamental frequency of the combined system in Fig. 1 can be
represented more accurately by oeq as given by Eq. (4).
Before proceeding further, it is in order to calculate the explicit value of 33

140
which is

a ¼ 33=140 ¼ 0:235714: (11)

One sees clearly from Table 1 that in a wide bM-region the o33=140 as given in Eq. (9) resembles a
good approximation for the fundamental eigenfrequency of the vibrational system in Fig. 1,
within which region a remains very close to the above value. The last column of Table 1 represents
another presentation of this fact.
4. Conclusion

The present note is concerned with the investigation of the degree of approximation in
obtaining the eigenfrequency of a cantilever carrying a tip mass M as the eigenfrequency of a
massless spring–mass system where the mass is composed of M and a times the mass of the beam.
It is thought that the given table can be helpful to design engineers working in this area.
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